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The complex three-dimensional bending of a long rod (with a square cross-section) made of an isotropic ideally plastic and ideally 
cyclical material is investigated. The bending of the rod occurs due to the action of two moments, applied to its ends in such a 
way that the longitudinal deformation of the middle fibres of two neighbeuring sides is described by a dashed line. © 1999 Elsevier 
Science Ltd. All rights reserved. 

The fundamental equations of the theory of small elastoplastic deformations for repeated and alternating 
loads were formulated in [1]. This theory is an extension of U'yushin's well-known theory of small 
elastoplastic deformations in the case of alternating loads. In this paper we solve a problem whose 
formulation is outside the scope of this theory. 

1. C O M P L E X  T H R E E - D I M E N S I O N A L  B E N D I N G  

We will investigate the complex three-dimensional bending of a long rod, the cross-section of which 
is a square Ix [ ~< a, l Y I ~< a. The rod is made of an isotropic ideally plastic and ideally cyclical 
incompressible material. We will use a Cartesian system of coordinates (x,y, z), where the z axis is the 
axis of the rod while z = ±L are its ends. The rod is bent by moments Mx and My, applied at its ends 
in such a way that the longitudinal deformations of the middle filaments of two neighbouring sides (x 
= --a,y = 0) and (x = 0,y = a) are described by a two-section dashed line with orthogonal fragments 
in the deformation plane (ez(-a, 0), ~(0, a)), where ez = 8z(x, y) is the longitudinal strain. 

It is clear from the condition of the problem that the stresses and strains are independent of the 
longitudinal coordinate. 

Henceforth we will use dimensionless coordinates, referred to a, i.e. x = _ 1, y = ___ 1 are the sides 
of the rod while z = ± I are its ends. 

Taking into account the fact that the material is incompressible and isotropic, the exact solution of 
the problem will be sought in the form 

a .  = o ( x ,  y ) ,  e = - e t t ) x  + ~t2)y, ~ = e ,  ~x = ey = - C/2 ( 1 . 1 )  

The other components of the stress and strain tensors are zero. 
The mechanical meaning of the constants e 0), e (2) will be made clear below. 
The longitudinal stresses and strains will henceforth be denoted by the quantities o and 8, respectively. 
Taking (1.1) into account, the equations of equilibrium and compatibility of the strains of the three- 

dimensional problem are satisfied automatically. The boundary condition in the stresses on the rod sides 
are also satisfied. 

Moments M x and My act on the cross-sections of the rod in such a way that the following deformation 
v (1) of the rod occurs: initially when 8(0, 1) - 0 the deformation 8(-1, 0) increases to a alue a , and the 

deformation a(0, 1) then increases to a value 8 (2) for a constant value of 8(-1, 0) --- e~l). 
To fix our ideas, we will assume that a0) > 0, ~(2) I> 0, where e(1) > 8s (the elastic limit for pure 

stretching). 
We will write the relation between the stresses and strains for uniaxial variable loading (along the 

z axis) of an ideally plastic and ideally cyclical incompressible material. Active loading is carried out 
until an elastoplastic deformation 8' is built up. Unloading and the buildup of secondary plastic 
deformations then occur. 
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For active loading we have 

t~=Ee,  e x = e y = - e / 2  for tel--.<es 
(1.2) 

cr =crs sign (e), e~ = ey = - e/2 for lel ~> ~, 

where E is Young's modulus, as is the elastic limit for stretching and cr s = Ees. 
For unloading from the deformed elastoplastic state e', the following relations hold between the 

stresses and strain 

with I e - e' [/> 2es and 

with I e - e' I ~> 2es. 

6 - t~" = E(e - e'), o ~ = 6s sign (e'), ex = ey = - 0,5e 

c = - as sign (e'), e x = ey = - e/2 (1.3) 

Relations (1.2) and (1.3) assume that the relation cr - a is symmetrical for compression and tension 
(the moduli of the elastic limits are the same for compression and tension). On the basis of these 
formulae, the stress ~ is an odd function with respect to the origin of coordinates. 

Consequently, the condition for the resultant axial force to be equal to zero is satisfied 
automatically. 

Henceforth we will use the following notation 

= E/Eo), ~t = e,/e(2> 

At the initial stage of the solution of the problem we will determine the distribution of the axial stresses 
~'(x, y) during the first part of the process of deformation of the rod, i.e. when e(2) = 0. 

The strain distribution has the form 

E' = - e ( l ) x  

Active elastoplastic loading is obtained in the rod. Elastoplastic strains e' and ~' = % build up in the 
region 11 I> x ~> - 1. In the elastoplastic region 11 ~< x ~< i we correspondingly have c '  = --%. The elastic 
strains are distributed in the region Ix I ~< rl and c '  = Ee'. 

The following moments act over the cross-sections of the rod 

Mx= 0 and M, = -  2(a3os)( 1 rl 2 - 1 )  

Since, when e (2) = O, we know the strains e' and the plastic regions, when e (2) > 0 we can obtain the 
regions of the cross-section of the rod in which active loading of the material, unloading, and the buildup 
of secondary plastic strains occur, as well as purely elastic loading. Then, taking relations (1.2)-(1.3) 
into account, we can calculate the axial stresses a(x, y). 

In view of the fact that a(x, y) is odd with respect to the origin of coordinates, it is sufficient to 
determine the stresses in the region y >/O. 
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We will consider the case when 2~t ~< 1 (Fig. 1). The strains e, e,x, ey are given by (1.1). The region 
y >I 0 can be conveniently split into five regions F~, F2, F3, F4, Fs (Fig. 1). 

In the region F1, by virtue of the equation sign (~') = sign (~ - e'), active loading occurs and cr = os. 
In the region F2 loading from an elastic state occurs. Since e 1> es we have o -- cr s. The region/ '3 is 
elastically loaded. Consequently o = Ee. Note that the interface between the plastic region F2 and the 
elastic region F3 is described by the equation es = -e(1)x + e(2)y. In the region F4 elastic unloading occurs, 
since 1 ~ - e' I <~ 2es, sign (~') = - sign (e - e'). Taking (1.2) into account we obtain cr = - Cs + Ee(2~. 
In the region Fs secondary plastic strains build up, since sign (e') = - sign (e - e') and [ e - e' I ~< 2es. 
We have cr = Crs. The interface between the last two regions is described by the equation y. = 2~t. 

In the elastic region F3 the equal-stress lines are described by the equation - ell)x + e(2~ = const. 
In the regions F4 and F5 the equal-stress lines are described by the equation y = const. 

We will write formulas for calculating the moments 

4 2 + : )  
Mx = 2(a3os. \ l  - -~  IX 

My= 2(a3os)B(l -I ~12) 

Consider the case when 2~ I> 1 (Fig. 2). This version differs from the previous one in the fact that 
there is no region of secondary plastic strains F5. The formulae for determining the stresses in the regions 
F~, F2, F3, F4 were written down above. 

The moments can be calculated from the formulae 

Mx = 2 (a 'o ' ,~ l  + ]-- rl --ff--~ / 1 
• k.:~ ~ ~ixJ~ 

My=-2(a'(~,) I]2-I+If I]] _ l_j_fl]] + (1_1.12) 
6LIX ) 24IX ~,IX.) 

We determine the dimensionless displacements (relative to a) from the Cauchy conditions 

= CI - 1e(2)--2 ~Y -~1 .<1),..2~y _x2)+lz2EO) Ux 

uy = DI + 41 e(2)(x2 _ y2)+ 21 e O)x.Y2_ 1 z2E(2) 

U z = ZE 

The displacements ux and u r are symmetrical with respect to the z coordinate. The constants C1 and 
D1 are calculated, taking into account the method by which the moments Mx and My are applied to the 
ends of  the rod z = _.+l. The following condition is usually assumed 

u,. = uy = 0 where z = l, x = 0, y = 0. 

2. S I M P L E  T H R E E - D I M E N S I O N A L  B E N D I N G  

We will assume that moments Mx and My act over the cross-sections of the rod in such a way that the 
following deformation process occurs 

E:(2)/I~ (!) = const or e(i) = 0 

Note, that when the last relations are taken into account, active elastoplastic loading occurs in the 
cross-sections of  the rod, and there are no regions of unloading. The equal-stress lines are described 
by the equation e(1)x + e(2)y = const. 

The strains and stresses are given by (1.1) and (1.2). Formulae for calculating the displacements were 
given at the end of the previous section. 

This process of  deformation of the rod is well known in deformed solid mechanics. 
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Below wegive  values of the dimensionless moments (with respect to the quantity a3os) M*, M~, 
M* = [(Mx*)" + (M~)'] L/" and M**, Mr**, M** when e TM = 6es and for different values of the quantities 
e(2)/es (the asterisk corresponds to th'e case of simple bending, while the double asterisks denote the 
case of complex bending) 

e(2)/~, 0.00 0,50 1.25 2.25 3.130 4.00 6.00 8.00 10.0 

* 0.00 O. I 1 0.28 0.50 0.67 0.89 1.32 1.61 1.75 Ux 
* 1.98 1,98 1.95 1.89 1,8 ! 1.69 1.32 1.00 0.80 

M* 1.98 ! ,98 1.97 1.95 1.93 1.91 1.87 1.90 1.93 

** 0.00 0.38 0.9 i 1.52 i.73 1.85 i.93 i .96 1,98 Mx 
** 1.98 1.74 !.36 0.88 0.66 0,50 0.33 0.25 0.20 M, 

/14"* 1.98 1.78 1.64 1.75 1.85 !,9 i 1.96 1.98 1.99 

The results show that the components Mx and My are more dependent on the deformation process 
than the absolute value, of(2)the moment. M. A characteristic dip in the dla~am" of M* *(e(2)/es) with resoect 
to the diagram o f M  (e /es) is observed in the region of the point e(z)= 0. For high values of e(2)/es 
the moments M* and M** are practically identical. This effect is similar to the well-known effect of 
the lag of the scalar properties of plastic materials in the case of complex loading of the two-section 
dashed line type in II'yushin's five-dimensional deformation space [1, 2]. 
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